If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+12X=84
We move all terms to the left:
X^2+12X-(84)=0
a = 1; b = 12; c = -84;
Δ = b2-4ac
Δ = 122-4·1·(-84)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{30}}{2*1}=\frac{-12-4\sqrt{30}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{30}}{2*1}=\frac{-12+4\sqrt{30}}{2} $
| 7x=14-x | | -4=3+x/7 | | 9=3n+6.n= | | -v/7=25 | | 2x-1=8-2x | | 7-2y=1+2y | | 6t*(-2)=144 | | 5x-15=-80 | | 9=3n+6n= | | 1.7n=13 | | 6t*(-3)=198 | | -61=d+(+ | | 6(n-2)=12(n-12) | | 6c+17=83 | | x+(x+74)=180 | | 10(-11-5x)+12x=-(2x+5)+3 | | 10y+100=10/4 | | 4^x^-2×27^x=3 | | -3+4=5x-20 | | -2r+7r=-3(-3+6r)-3(r+3) | | -48r-5r-(-34r)+-17=2 | | 8y =5 | | 1/5x-9=7 | | -10(1-5n)=-10(-4n-4) | | 1/4y-1=2-1/2y | | x+6^(1/2)=x | | 4(v+6)=10(12-2v) | | 2u-15=5 | | 3p-10p=-3(7p-7)+9(p+11) | | -18x=17+x/6 | | 8x-12=5x-18 | | 12b=12b |